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Abstract 
Any cryptographic system is used to exchange confidential information securely over the public channel 

without any leakage of information to the unauthorized users. Neural networks can be used to generate a common 
secret key because the processes involve in Cryptographic system requires large computational power and very 
complex. Moreover Diffi hellman key exchange is suffered from man-in –the middle attack. For overcome this 
problem neural networks can be used.Two neural networks which are trained on their mutual output bits. The 
networks synchronize to a state with identical time dependent weights. .secret key exchange over a public channel 
and this key can be used in implementing any encryption algorithm. 
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     Introduction 
Now a days information Security is 

becoming crucial aspect in every organization. In our 
work we are combining neural networks and 
cryptography to achieve a robust System against Man 
-in –the-middle attack. 

Cryptography is the art of mangling 
information into apparaent unintelligibility in a 
manner allowing a secret method of unmangling. 
Cryptography is the ability to send information 
between participants in a way that prevents others 
from reading it. Original Message is known as plain 
text and it mangled from is known as cipher text. 
With the context of any application-to-application 
communication there are some security requirements 
like Authentication, Confidentiality,  Integrity, Non-
Repudiation etc. 

Neural Network Artificial neural networks 
are parallel adaptive networks of consisting of simple 
nonlinear computing elements called neurons which 
are intended to abstract and model some of the 
functionalities of human nervous system in an 
attempt to partially capture some of its computational 
strength. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. A trained neural network can be a 
thought of as an “expert” in the category of 
information it has been given to analyse. 

So by combining both technologies we can 
generate better results using less complex functions 
and providing better security. 
 
Neural Cryptography 

Two identical systems, starting from 
different initial conditions can be synchronized by a 
common external signal which is coupled to the two 
systems. Both of the networks will be trained on their 
mutual output and can synchronized to a time 
independent state of identical synaptic weights. This 
rarity is applied to cryptography. In this case two 
partners in communication does not have a common 
secret key but they use their identical weights as a 
secret key for communication. This common weights 
can be used to form a key needed for encryption and 
decryption. 

Synchronization by mutual learning can be 
faster than learning by listening. Neural cryptography 
is simpler than conventional cryptography and it is 
fast converging and secure also. 

For this we have used a different type of 
neural network called Tree parity machine. 
 
 Tree Parity Machine 

For this work we have used a simple neural 
network which is called tree parity machine 
(TPM).these are special type of neural network. 
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Figure 1: Tree Parity machine
This can be described by three parameters: 

K hidden layers, each of which can be seen as a 
single layer perceptron with N input neurons in each 
hidden layer, L is the maximum value for weight{
L…+L}. All input values are binary i.e.
.xi,j∈{−1,+1}               (1)  
 
And the weights, which define the mapping from 
input to output, are discrete Numbers between 
+L 
    Wi,j ∈ {−L,−L + 1, . . . ,+L}    (2)                                          
Output value of each hidden neuron is calculated as a 
sum of all multiplications of input neurons and these 
weights: 
  σi = sgn ∑ ��

��� ijX i          (3)                                                                   
                                                                                        
 Two partners have the same neural machines and 
their output value is calculated by: 

                          (4) 
both networks receive common inputs vector X and 
select random initial weight vectors W. both the 
networks trained by their output bits τ(A)=
the following learning rules can be applied:

1. If τ(A)≠τ(B) nothing is changed.
2. If τ(A)=τ(B)=τ only the hidden unit is 

changed for σk(A/B)=τ(A/B) 
3. Three different rules can be considered for 

learning. 
a)Hebbian learning rule :  
wi

+ =  wi+ σi xi θ(σi

(5)                       
      b)   Anti-Hebbian learning rule:  

wi
+ =   wi - σi xi θ(σ

(6)                                                                                         
      c) Random-walk learning rule:  

    wi
+ =    wi+ xi θ(σiτ) θ(τ

A τB)                  
Here, Theta is a special function. Theta (a, b) = 0 if 
a<>b; else Theta=1. The g(...) function keeps the 
weight in the range {- L..+L} 
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Figure 1: Tree Parity machine 

This can be described by three parameters: 
K hidden layers, each of which can be seen as a 
single layer perceptron with N input neurons in each 

layer, L is the maximum value for weight{-
All input values are binary i.e. 

And the weights, which define the mapping from 
input to output, are discrete Numbers between −L and 

(2)                                           
Output value of each hidden neuron is calculated as a 
sum of all multiplications of input neurons and these 

(3)                                                                    
                                                                                         
Two partners have the same neural machines and 

both networks receive common inputs vector X and 
select random initial weight vectors W. both the 

τ(A)=τ(B). 
the following learning rules can be applied: 

(B) nothing is changed. 
 only the hidden unit is 

 
Three different rules can be considered for 

iτ) θ(τA τ
B)                                      

θ(σiτ) θ(τA τ
B)                                 

                                                                                         

)                    (7)                                  
Here, Theta is a special function. Theta (a, b) = 0 if 
a<>b; else Theta=1. The g(...) function keeps the 

Secret Key Generation 
1. First of all determine the neural network 

parameters i.e. k, the number of hidden  
layer units n, the input layer units for each 
hidden layer unit l, the range of synaptic 
weight values is done by the two machines 
A and B.  

2. The network weights to be initia
randomly.  

3.  Repeat 4 to 7 until synchronization occurs. 
4. The inputs of the hidden units are calculated. 
5. The output bit is generated and exchanged 

between the two machines A and B. 
6. If the output vectors of both the machines 

are same i.e. τA = τB then the corresponding 
weights are modified using the Hebbian 
learning rule, Anti-Hebbian learning rule 
and Random-walk learning rule. 

7. After complete synchronization, the synaptic 
weights are same for both the networks. And 
these weights are used as secr
In this work we have increase the key size 

without increasing the weight range as a result we get 
maximum security with less synchronization time.

This key can be utilized to encrypt  a 
sensitive message transmitted over an insecure 
channel using AES algorithm with Key size 
128,192,256 bits.  

 
 Security Analysis 
      By using Neural network we can show that  
An attacker E     can eavesdrop messages between the 
parties A and B, but does not have an opportunity to 
change them. 

a) Brute force Attack 
To provide a brute force attack, an attacker 

has to test all possible keys (all possible values of 
weights wij ). By K hidden neurons, K*N input 
neurons and boundary of weights L, this gives 
(2L+1)KN possibilities, making the attack impossible 
with today’s computer power. 

b) Learning with own tree parity machine
If an attacker owns the same tree parity 

machine same as the parties A and B. He wants to 
synchronize his tree parity machine with these two 
parties. In each step there are three situations 
possible: 

. In each step there are three situations possible:
1. Output(A) ≠ Output(B): None of the parties 

updates its weights. 
2. Output(A) = Output(B) = Output(E): All the 

three parties update weights in their tree 
parity machines. 

3. Output(A) = Output(B) 
A and B update their tree parity machines, 
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First of all determine the neural network 
parameters i.e. k, the number of hidden  
layer units n, the input layer units for each 
hidden layer unit l, the range of synaptic 
weight values is done by the two machines 

The network weights to be initialized 

Repeat 4 to 7 until synchronization occurs.  
The inputs of the hidden units are calculated.  
The output bit is generated and exchanged 
between the two machines A and B.  
If the output vectors of both the machines 

then the corresponding 
weights are modified using the Hebbian 

Hebbian learning rule 
walk learning rule.  

After complete synchronization, the synaptic 
weights are same for both the networks. And 
these weights are used as secret key.  
In this work we have increase the key size 

without increasing the weight range as a result we get 
maximum security with less synchronization time. 

This key can be utilized to encrypt  a 
sensitive message transmitted over an insecure 

AES algorithm with Key size 

By using Neural network we can show that  
An attacker E     can eavesdrop messages between the 
parties A and B, but does not have an opportunity to 

provide a brute force attack, an attacker 
has to test all possible keys (all possible values of 

). By K hidden neurons, K*N input 
neurons and boundary of weights L, this gives 

possibilities, making the attack impossible 

Learning with own tree parity machine 
If an attacker owns the same tree parity 

machine same as the parties A and B. He wants to 
synchronize his tree parity machine with these two 
parties. In each step there are three situations 

each step there are three situations possible: 
 Output(B): None of the parties 

Output(A) = Output(B) = Output(E): All the 
three parties update weights in their tree 

Output(A) = Output(B) ≠ Output(E): Parties 
A and B update their tree parity machines, 
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but the attacker cannot do that. Because of 
this situation his learning is slower than the 
synchronization of parties A and B. 

       It has been proven, that the synchronization of 
two parties     is faster than learning of an attacker. It 
can be improved by increasing of the synaptic depth 
L of the neural network. That gives this protocol 
enough security and an attacker can find out the key 
only with small probability. 

 
Implementation and Results 

All work have been done in MATLAB and  
some data sets are obtained  for  synchronization  
time by  varying number of input units. 
S.No. Different issues Without 

NN 
With NN 

1. Randomness no More 
2. Security less More 
3. Synchronization 

time 
Not 
required 

required 

The number of  iterations required for 
synchronization by varying number of input units. If  
the value of n increases, the synchronization time and 
number of iteration also increases 
 
Conclusion and Future Work 

We presented a bridge between 
cryptography and network security.It provides greater 
security and also great speed than complex 
cryptographic algorithm which requires large 
computational power.our future work will make use 
of secret key generated by neural network in advance 
encryption algorithm like triple DES,IDEA. We can 
use a key distribution centre which can generate as 
well as distribute the secret key among several parties 
securely 

Moreover, we can use this key in generating 
hash functions. Neural networks can be used in 
generating one way hash function by using its 
confusion and diffusion  and compression properties. 
This hash function will be less complex than in 
cryptographic hashes.and we can also analyze the 
security of system against meetin middle attach and 
birthday attacks 
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