
[Soni, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1707-1709]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Secure Key Exchange using Neural Network
Vineeta Soni*1, Mrs.Sarvesh Tanwar2

*1 Computer Science and Engineering, M.I.T.S University, Laxmangarh (Rajasthan), India
2 Assistant Professor , Computer Science and Engineering, M.I.T.S University, Laxmangarh (Rajasthan),

India
vineeta.soni89@yahoo.com

Abstract
Any cryptographic system is used to exchange confidential information securely over the public channel

without any leakage of information to the unauthorized users. Neural networks can be used to generate a common
secret key because the processes involve in Cryptographic system requires large computational power and very
complex. Moreover Diffi hellman key exchange is suffered from man-in –the middle attack. For overcome this
problem neural networks can be used.Two neural networks which are trained on their mutual output bits. The
networks synchronize to a state with identical time dependent weights. .secret key exchange over a public channel
and this key can be used in implementing any encryption algorithm.

Keywords: Neural Network ;Cryptography ; Tree Parity Machine; Mutual Learning; Time dependent weights;
Synchronizatio

 Introduction
Now a days information Security is

becoming crucial aspect in every organization. In our
work we are combining neural networks and
cryptography to achieve a robust System against Man
-in –the-middle attack.

Cryptography is the art of mangling
information into apparaent unintelligibility in a
manner allowing a secret method of unmangling.
Cryptography is the ability to send information
between participants in a way that prevents others
from reading it. Original Message is known as plain
text and it mangled from is known as cipher text.
With the context of any application-to-application
communication there are some security requirements
like Authentication, Confidentiality, Integrity, Non-
Repudiation etc.

Neural Network Artificial neural networks
are parallel adaptive networks of consisting of simple
nonlinear computing elements called neurons which
are intended to abstract and model some of the
functionalities of human nervous system in an
attempt to partially capture some of its computational
strength. They can be used to model complex
relationships between inputs and outputs or to find
patterns in data. A trained neural network can be a
thought of as an “expert” in the category of
information it has been given to analyse.

So by combining both technologies we can
generate better results using less complex functions
and providing better security.

Neural Cryptography

Two identical systems, starting from
different initial conditions can be synchronized by a
common external signal which is coupled to the two
systems. Both of the networks will be trained on their
mutual output and can synchronized to a time
independent state of identical synaptic weights. This
rarity is applied to cryptography. In this case two
partners in communication does not have a common
secret key but they use their identical weights as a
secret key for communication. This common weights
can be used to form a key needed for encryption and
decryption.

Synchronization by mutual learning can be
faster than learning by listening. Neural cryptography
is simpler than conventional cryptography and it is
fast converging and secure also.

For this we have used a different type of
neural network called Tree parity machine.

 Tree Parity Machine

For this work we have used a simple neural
network which is called tree parity machine
(TPM).these are special type of neural network.

[Soni, 3(3): March, 2014]

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

Figure 1: Tree Parity machine
This can be described by three parameters:

K hidden layers, each of which can be seen as a
single layer perceptron with N input neurons in each
hidden layer, L is the maximum value for weight{
L…+L}. All input values are binary i.e.
.xi,j∈{−1,+1} (1)

And the weights, which define the mapping from
input to output, are discrete Numbers between
+L
 Wi,j ∈ {−L,−L + 1, . . . ,+L} (2)
Output value of each hidden neuron is calculated as a
sum of all multiplications of input neurons and these
weights:
 σi = sgn ∑ ��

��� ijX i (3)

 Two partners have the same neural machines and
their output value is calculated by:

 (4)
both networks receive common inputs vector X and
select random initial weight vectors W. both the
networks trained by their output bits τ(A)=
the following learning rules can be applied:

1. If τ(A)≠τ(B) nothing is changed.
2. If τ(A)=τ(B)=τ only the hidden unit is

changed for σk(A/B)=τ(A/B)
3. Three different rules can be considered for

learning.
a)Hebbian learning rule :
wi

+ = wi+ σi xi θ(σi

(5)
 b) Anti-Hebbian learning rule:

wi
+ = wi - σi xi θ(σ

(6)
 c) Random-walk learning rule:

 wi
+ = wi+ xi θ(σiτ) θ(τ

A τB)
Here, Theta is a special function. Theta (a, b) = 0 if
a<>b; else Theta=1. The g(...) function keeps the
weight in the range {- L..+L}

 ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology
[1707-1709]

Figure 1: Tree Parity machine

This can be described by three parameters:
K hidden layers, each of which can be seen as a
single layer perceptron with N input neurons in each

layer, L is the maximum value for weight{-
All input values are binary i.e.

And the weights, which define the mapping from
input to output, are discrete Numbers between −L and

(2)
Output value of each hidden neuron is calculated as a
sum of all multiplications of input neurons and these

(3)

Two partners have the same neural machines and

both networks receive common inputs vector X and
select random initial weight vectors W. both the

τ(A)=τ(B).
the following learning rules can be applied:

(B) nothing is changed.
 only the hidden unit is

Three different rules can be considered for

iτ) θ(τA τ
B)

θ(σiτ) θ(τA τ
B)

) (7)
Here, Theta is a special function. Theta (a, b) = 0 if
a<>b; else Theta=1. The g(...) function keeps the

Secret Key Generation
1. First of all determine the neural network

parameters i.e. k, the number of hidden
layer units n, the input layer units for each
hidden layer unit l, the range of synaptic
weight values is done by the two machines
A and B.

2. The network weights to be initia
randomly.

3. Repeat 4 to 7 until synchronization occurs.
4. The inputs of the hidden units are calculated.
5. The output bit is generated and exchanged

between the two machines A and B.
6. If the output vectors of both the machines

are same i.e. τA = τB then the corresponding
weights are modified using the Hebbian
learning rule, Anti-Hebbian learning rule
and Random-walk learning rule.

7. After complete synchronization, the synaptic
weights are same for both the networks. And
these weights are used as secr
In this work we have increase the key size

without increasing the weight range as a result we get
maximum security with less synchronization time.

This key can be utilized to encrypt a
sensitive message transmitted over an insecure
channel using AES algorithm with Key size
128,192,256 bits.

 Security Analysis
 By using Neural network we can show that
An attacker E can eavesdrop messages between the
parties A and B, but does not have an opportunity to
change them.

a) Brute force Attack
To provide a brute force attack, an attacker

has to test all possible keys (all possible values of
weights wij). By K hidden neurons, K*N input
neurons and boundary of weights L, this gives
(2L+1)KN possibilities, making the attack impossible
with today’s computer power.

b) Learning with own tree parity machine
If an attacker owns the same tree parity

machine same as the parties A and B. He wants to
synchronize his tree parity machine with these two
parties. In each step there are three situations
possible:

. In each step there are three situations possible:
1. Output(A) ≠ Output(B): None of the parties

updates its weights.
2. Output(A) = Output(B) = Output(E): All the

three parties update weights in their tree
parity machines.

3. Output(A) = Output(B)
A and B update their tree parity machines,

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

First of all determine the neural network
parameters i.e. k, the number of hidden
layer units n, the input layer units for each
hidden layer unit l, the range of synaptic
weight values is done by the two machines

The network weights to be initialized

Repeat 4 to 7 until synchronization occurs.
The inputs of the hidden units are calculated.
The output bit is generated and exchanged
between the two machines A and B.
If the output vectors of both the machines

then the corresponding
weights are modified using the Hebbian

Hebbian learning rule
walk learning rule.

After complete synchronization, the synaptic
weights are same for both the networks. And
these weights are used as secret key.
In this work we have increase the key size

without increasing the weight range as a result we get
maximum security with less synchronization time.

This key can be utilized to encrypt a
sensitive message transmitted over an insecure

AES algorithm with Key size

By using Neural network we can show that
An attacker E can eavesdrop messages between the
parties A and B, but does not have an opportunity to

provide a brute force attack, an attacker
has to test all possible keys (all possible values of

). By K hidden neurons, K*N input
neurons and boundary of weights L, this gives

possibilities, making the attack impossible

Learning with own tree parity machine
If an attacker owns the same tree parity

machine same as the parties A and B. He wants to
synchronize his tree parity machine with these two
parties. In each step there are three situations

each step there are three situations possible:
 Output(B): None of the parties

Output(A) = Output(B) = Output(E): All the
three parties update weights in their tree

Output(A) = Output(B) ≠ Output(E): Parties
A and B update their tree parity machines,

[Soni, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1707-1709]

but the attacker cannot do that. Because of
this situation his learning is slower than the
synchronization of parties A and B.

 It has been proven, that the synchronization of
two parties is faster than learning of an attacker. It
can be improved by increasing of the synaptic depth
L of the neural network. That gives this protocol
enough security and an attacker can find out the key
only with small probability.

Implementation and Results

All work have been done in MATLAB and
some data sets are obtained for synchronization
time by varying number of input units.
S.No. Different issues Without

NN
With NN

1. Randomness no More
2. Security less More
3. Synchronization

time
Not
required

required

The number of iterations required for
synchronization by varying number of input units. If
the value of n increases, the synchronization time and
number of iteration also increases

Conclusion and Future Work

We presented a bridge between
cryptography and network security.It provides greater
security and also great speed than complex
cryptographic algorithm which requires large
computational power.our future work will make use
of secret key generated by neural network in advance
encryption algorithm like triple DES,IDEA. We can
use a key distribution centre which can generate as
well as distribute the secret key among several parties
securely

Moreover, we can use this key in generating
hash functions. Neural networks can be used in
generating one way hash function by using its
confusion and diffusion and compression properties.
This hash function will be less complex than in
cryptographic hashes.and we can also analyze the
security of system against meetin middle attach and
birthday attacks

References
1. Dr. Ajit Singh, Aarti nandal ,“Neural

Cryptography for Secret Key Exchange and
Encryption with AES”, International
Journal of Advanced Research in Computer

Science and Software Engineering, Volume
3, Issue 5, May 2013 ISSN: 2277 128X

2. Wright, Jason L., and Milos Manic. "Neural
network approach to locating cryptography
in object code." Emerging Technologies &
Factory Automation, 2009. ETFA 2009.
IEEE Conference on. IEEE, 2009.

3. Arvandi, M., S. Wu, and A. Sadeghian. "On
the use of recurrent neural networks to
design symmetric ciphers." Computational
Intelligence Magazine, IEEE 3.2 (2008): 42-

4. Hen, Tieming, and Rongrong Jiang.
"Designing Security Protocols Using Novel
Neural Network Model." Natural
Computation, 2007. ICNC 2007. Third
International Conference on. Vol. 1. IEEE,
2007.

5. Liu, Niansheng, and Donghui Guo.
"Security analysis of public-key encryption
scheme based on neural networks and its
implementing”Computational Intelligence
and Security. Springer Berlin Heidelberg,
2007. 443-450..

6. Arvandi, Maryam, and Alireza Sadeghian.
"Chosen Plaintext Attack against Neural
Network-Based Symmetric Cipher." Neural
Networks, 2007. IJCNN 2007. International
Joint Conference on. IEEE, 2007

7. William, S., & Stallings, W. (2006).
“Cryptography and Network Security, 4/E”.
Pearson Education India.

8. Godhavari, T., N. R. Alamelu, and R.
Soundararajan. "Cryptography using
neural network." INDICON, 2005 Annual
IEEE. IEEE, 2005.

9. Mislovaty, R., et al. "Security of neural
cryptography." Electronics, Circuits and
Systems, 2004. ICECS 2004. Proceedings of
the 2004 11th IEEE International
Conference on. IEEE, 2004.

10. Wolfgang, and Ido Kanter. "Interacting
neural networks and cryptography, Springer
Berlin Heidelberg, 2002. 383-391.

11. Klimov, Alexander, Anton Mityagin, and Adi
Shamir. "Analysis of neural cryptography."
Advances in Cryptology—ASIACRYPT
2002. Springer Berlin Heidelberg, 2002.
288-298.

12. Haykin, Simon. “Neural networks: a
comprehensive foundation. Prentice Hall
PTR, 1994”

